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Abstract

This paper describes a submission of team AG to the Yahoo! Learning to Rank Challenge
held in 2010. This solution has scored 4th place in the main track. The primary algorithm
used is Additive Groves of regression trees.

1. Competition and Data

Yahoo! Labs organized the first Learning to Rank Challenge in spring 2010. The challenge
ran from March 1 to May 31 and received 4, 736 submissions from 1, 055 teams. The
competition included two tracks: main track was dedicated to the problem of learning to
rank on large data sets itself, and the second track dealt with the transfer learning on
smaller data sets. The author participated in the main track, so the rest of the paper will
consider the setting of the first problem only.

The training data for the first track of the challenge consisted of 473, 134 query-url pairs
and 519 features defined for those pairs. The relevance labels took on the values from 0
to 4. As suggested in (Chapelle et al. (2009)), we converted these values to probability of
relevance using the formula:

R(g) =
2g

16
, (1)

where g is the original label and R(g) is the new label, probability of relevance.
Competition data also included validation set (71, 083 data points) and test set (165, 660

data points). Labels for these data sets were not provided.

2. Additive Groves

We refer the reader to the paper where Additive Groves were introduced ( Sorokina et al.
(2007)) for the detailed description of the algorithm, but here it is in a nutshell:

Additive Groves ensemble consists of bagged additive models, where every element of
an additive model is a tree. A single grove is trained similar to an additive model: each tree
is trained on the residuals of the sum of the predictions of the other trees. Such training is
performed in the backfitting style: trees are discarded and retrained in turn until the overall
predictions converge to a stable function. In addition, each grove of a non-trivial size is
iteratively built from smaller models: either a tree is added to a grove with fewer trees or
the size of trees is increased in a grove with smaller trees; which of the two steps happen
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in each particular case is defined by comparing models on out-of-bag data. A single grove
consisting of large trees can and will overfit heavily to the training set, therefore bagging is
applied on top in order to reduce variance.

In this challenge, we were using the original regression version of the algorithm optimiz-
ing least squares loss. Apart from the initial label transfromation, no attempts were made
on optimizing for any special ranking metrics, RMSE was used as a performance metric at
all times.

3. Experiments

First, the original training data was split into training and validation sets: 75% for training,
25% for validation. The data points corresponding to the same query were always placed
into the same set. All parameter tuning was performed on thus created hold-out validation
set, the official validation set was not used for training.

Then, an attempt at feature selection was made. We used bagging with multiple counts
(Caruana et al. (2006)) to rank the features, as this method proved to be useful as a
preprocessing method for Additive Groves in the past (Sorokina (2009)). First, we built
several ensembles of 200 bagged trees of different sizes and determined that the ensemble
consisting of full trees results in the best performance on the validation set. Then, the
features were ranked based on how they were used in that ensemble. In particular, features
got scored based on how large are the tree nodes splitted by those features.

Retraining the ensemble using only 200 top features from the resulting list did not
change the performance of bagged trees. Using only 100 top features resulted in a seemingly
insignificant decrease in the performance. Based on that, it was decided to use 100 top
features for parameter tuning stage of training Additive Groves and 200 features for the
final model.

On the parameter tuning stage a grid of Additive Groves models was built on the training
set and estimated on the hold-out validation set. The grid was built using 181 iterations
of bagging. Two main parameters of an Additive Groves model are N — the number of
trees in a single grove and α — maximum proportion of the training set in the leaf node
(the smaller the value of α, the larger the tree). The grid consisted of models corresponding
to all possible pairs of (N,α), where N took values from 1 to 9 and α from the sequence
{0.5, 0.2, 0.1, 0.05, 0.02, 0.01, ..., 0.0001}. The best performance on the validation set was
produced by the model with the parameters N = 9 and α = 0.0005. These values were
chosen to train the final model.

The final Additive Groves model was trained using 200 features, whole training data set
(no more splitting to train and validation), 216 bagging iterations and values of parameters
N = 9 and α = 0.0005 chosen during tuning. Predictions of this model constitute the final
submission of team AG. It resulted in the scores ERR = 0.466157 and NDCG = 0.8018
on the official test set. The best scores achieved on these metrics by other teams, ERR =
0.468605 and NDCG = 0.806, demonstrate about a 0.5% improvement over AG scores.
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4. Parallelization and Running Time

The primary goal of these experiments was to generate the best possible model given the
time and resource constraints, and no attempts were made to produce anything resembling
precise academic running time measurements. However, to give the reader some idea about
the algorithm capabilities, we decided to share some details of that aspect as well.

The whole process took less than 3 weeks: between the moment the author started
working in Yandex Labs (May 10th) and the end of the competition (May 31st). All
Additive Groves models were build with the help of parallelization. As Additive Groves
algorithm is based on bagging, it is trivially parallelizable: each iteration of bagging can
run on a separate cluster node. The iterations were trained this way on 220 nodes in parallel;
the actual numbers of bagging iterations in the resulting models (181 for parameter tuning,
216 for the final model) correspond to the number of iterations that have actually completed
and not crashed for various reasons.

Our logs show that the training of the first Additive Groves model grid started on May
22nd, and was done in four phases, each of which took less than a day. The final model
was trained in one phase on May 27-31. It is worth noting that the training took place on
a cluster overloaded with other processes during the final days of competition, and most of
the time AG processes were getting only half of the CPU time they needed. Some of the
iterations (apparently, those that were lucky to get more CPU time) were finished in less
than 2 days, others ran for the whole 4 days. Most of the cluster nodes are equipped with
2.33GHz Intel Xeon CPU’s.

5. Potential Improvements

A number of choices were made solely due to the time and resource availability constraints
of the author. It is possible that without those constraints the performance of Additive
Groves on this data set could be further improved.

• Using less than half of the available features did not hamper the performance of bagged
trees, but could make a difference in the performance of a more complex model like
Additive Groves.

• No tests were performed on whether values of N > 9 result in a better model. The
difference between N = 8 and N = 9 was already very small, so no big improvement
is likely, but some improvement is still possible.

• The number of bagging iterations used is likely not large enough to achieve complete
convergence. Another 100 iterations of bagging could improve the model.

6. Conclusion

Additive Groves method proved to be a very good fit for the learning to rank challenge
data. The best model included many additive components (N = 9) as well as high non-
linear complexity (α = 0.0005, which loosely corresponds to depth of trees equal to 12).
This means that the ranking function had both strong additive structure and many com-
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plex interactions at the same time. Additive Groves consistently outperforms many other
learning methods exactly because it is able to fit both of those types of complexity.

7. TreeExtra package

The algorithms used in this submission — Additive Groves and bagging with multiple
counts feature evaluation — are available as parts of TreeExtra package. TreeExtra is a set
of command line tools written in C++. You can find binaries, code and manuals at

www.cs.cmu.edu/˜daria/TreeExtra.htm
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